Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 680, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798274

RESUMO

European ash, Fraxinus excelsior is facing the double threat of ongoing devastation by the invasive fungal pathogen, Hymenoscyphus fraxineus and the imminent arrival of the non-native emerald ash borer (EAB), Agrilus planipennis. The spread of EAB which is currently moving westwards from European Russia and Ukraine into central Europe, poses an additional substantial threat to European ash, F. excelsior. While the molecular basis for resistance or variation in resistance among European ash genotypes is heavily investigated, comparatively little is known about the molecular ash traits involved in resistance against EAB. In this study we have gathered transcriptomic data from EAB inoculated genotypes of F. excelsior that have previously shown different levels of susceptibility to EAB. Resultant datasets show differential gene expression in susceptible and resistant genotypes in response to EAB infestation. This data will provide important information on the molecular basis of resistance to the EAB and allow the development of management plans to combat a pending threat of a culturally and ecologically important European tree species.


Assuntos
Besouros , Fraxinus , Transcriptoma , Animais , Fraxinus/genética , Perfilação da Expressão Gênica , Genótipo
2.
New Phytol ; 240(3): 1219-1232, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37345294

RESUMO

Plants rely on cross-resistance traits to defend against multiple, phylogenetically distinct enemies. These traits are often the result of long co-evolutionary histories. Biological invasions can force naïve plants to cope with novel, coincident pests, and pathogens. For example, European ash (Fraxinus excelsior) is substantially threatened by the emerald ash borer (EAB), Agrilus planipennis, a wood-boring beetle, and the ash dieback (ADB) pathogen, Hymenoscyphus fraxineus. Yet, plant cross-resistance traits against novel enemies are poorly explored and it is unknown whether naïve ash trees can defend against novel enemy complexes via cross-resistance mechanisms. To gain mechanistic insights, we quantified EAB performance on grafted replicates of ash genotypes varying in ADB resistance and characterized ash phloem chemistry with targeted and untargeted metabolomics. Emerald ash borer performed better on ADB-susceptible than on ADB-resistant genotypes. Moreover, changes in EAB performance aligned with differences in phloem chemical profiles between ADB-susceptible and ADB-resistant genotypes. We show that intraspecific variation in phloem chemistry in European ash can confer increased cross-resistance to invasive antagonists from different taxonomic kingdoms. Our study suggests that promotion of ADB-resistant ash genotypes may simultaneously help to control the ADB disease and reduce EAB-caused ash losses, which may be critical for the long-term stability of this keystone tree species.


Assuntos
Besouros , Fraxinus , Animais , Fraxinus/genética , Metabolômica , Genótipo , Larva
3.
Front Microbiol ; 14: 1154344, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125194

RESUMO

Introduction: The ascomycete Hymenoscyphus fraxineus, originating from Asia, is currently threatening common ash (Fraxinus excelsior) in Europe, massive ascospore production from the saprotrophic phase being a key determinant of its invasiveness. Methods: To consider whether fungal diversity and succession in decomposing leaf litter are affected by this invader, we used ITS-1 metabarcoding to profile changes in fungal community composition during overwintering. The subjected ash leaf petioles, collected from a diseased forest and a healthy ash stand hosting the harmless ash endophyte Hymenoscyphus albidus, were incubated in the forest floor of the diseased stand between October 2017 and June 2018 and harvested at 2-3-month intervals. Results: Total fungal DNA level showed a 3-fold increase during overwintering as estimated by FungiQuant qPCR. Petioles from the healthy site showed pronounced changes during overwintering; ascomycetes of the class Dothideomycetes were predominant after leaf shed, but the basidiomycete genus Mycena (class Agaricomycetes) became predominant by April, whereas H. albidus showed low prevalence. Petioles from the diseased site showed little change during overwintering; H. fraxineus was predominant, while Mycena spp. showed increased read proportion by June. Discussion: The low species richness and evenness in petioles from the diseased site in comparison to petioles from the healthy site were obviously related to tremendous infection pressure of H. fraxineus in diseased forests. Changes in leaf litter quality, owing to accumulation of host defense phenolics in the pathogen challenged leaves, and strong saprophytic competence of H. fraxineus are other factors that probably influence fungal succession. For additional comparison, we examined fungal community structure in petioles collected in the healthy stand in August 2013 and showing H. albidus ascomata. This species was similarly predominant in these petioles as H. fraxineus was in petioles from the diseased site, suggesting that both fungi have similar suppressive effects on fungal richness in petiole/rachis segments they have secured for completion of their life cycle. However, the ability of H. fraxineus to secure the entire leaf nerve system in diseased forests, in opposite to H. albidus, impacts the general diversity and successional trajectory of fungi in decomposing ash petioles.

4.
IMA Fungus ; 14(1): 10, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170345

RESUMO

Tree diseases constitute a significant threat to biodiversity worldwide. Pathogen discovery in natural habitats is of vital importance to understanding current and future threats and prioritising efforts towards developing disease management strategies. Ash dieback is a fungal disease of major conservational concern that is infecting common ash trees, Fraxinus excelsior, in Europe. The disease is caused by a non-native fungal pathogen, Hymenoscyphus fraxineus. Other dieback causing-species have not previously been identified in the genus Hymenoscyphus. Here, we discover the pathogenicity potential of two newly identified related species of Asian origin, H. koreanus and H. occultus, and one Europe-native related species, H. albidus. We sequence the genomes of all three Hymenoscyphus species and compare them to that of H. fraxineus. Phylogenetic analysis of core eukaryotic genes identified H. albidus and H. koreanus as sister species, whilst H. occultus diverged prior to these and H. fraxineus. All four Hymenoscyphus genomes are of comparable size (55-62 Mbp) and GC contents (42-44%) and encode for polymorphic secretomes. Surprisingly, 1133 predicted secreted proteins are shared between the ash dieback pathogen H. fraxineus and the three related Hymenoscyphus endophytes. Amongst shared secreted proteins are cell death-inducing effector candidates, such as necrosis, and ethylene-inducing peptide 1-like proteins, Nep1-like proteins, that are upregulated during in planta growth of all Hymenoscyphus species. Indeed, pathogenicity tests showed that all four related Hymenoscyphus species develop pathogenic growth on European ash stems, with native H. albidus being the least virulent. Our results identify the threat Hymenoscypohus species pose to the survival of European ash trees, and highlight the importance of promoting pathogen surveillance in environmental landscapes. Identifying new pathogens and including them in the screening for durable immunity of common ash trees is key to the long-term survival of ash in Europe.

5.
Nat Commun ; 13(1): 3729, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764640

RESUMO

The repeated, rapid and often pronounced patterns of evolutionary divergence observed in insular plants, or the 'plant island syndrome', include changes in leaf phenotypes, growth, as well as the acquisition of a perennial lifestyle. Here, we sequence and describe the genome of the critically endangered, Galápagos-endemic species Scalesia atractyloides Arnot., obtaining a chromosome-resolved, 3.2-Gbp assembly containing 43,093 candidate gene models. Using a combination of fossil transposable elements, k-mer spectra analyses and orthologue assignment, we identify the two ancestral genomes, and date their divergence and the polyploidization event, concluding that the ancestor of all extant Scalesia species was an allotetraploid. There are a comparable number of genes and transposable elements across the two subgenomes, and while their synteny has been mostly conserved, we find multiple inversions that may have facilitated adaptation. We identify clear signatures of selection across genes associated with vascular development, growth, adaptation to salinity and flowering time, thus finding compelling evidence for a genomic basis of the island syndrome in one of Darwin's giant daisies.


Assuntos
Elementos de DNA Transponíveis , Genômica , Evolução Biológica , Elementos de DNA Transponíveis/genética , Sintenia/genética
6.
Microorganisms ; 10(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35208829

RESUMO

Some common ash trees (Fraxinus excelsior) show tolerance towards shoot dieback caused by the invasive ascomycete Hymenoscyphus fraxineus. Leaf petioles are considered to serve as a pathogen colonization route to the shoots. We compared four common ash clones with variation in disease tolerance, and included the native host, Manchurian ash (Fraxinus mandshurica), as a reference. Tissue colonization, following rachis inoculation by H. fraxineus, was monitored by histochemical observations and a quantitative polymerase chain reaction (qPCR) assay specific to H. fraxineus. Axial spread of the pathogen towards the petiole base occurred primarily within the phloem and parenchyma, tissues rich in starch in healthy petioles. In inoculated petioles, a high content of phenolics surrounded the hyphae, presumably a host defense response. There was a relationship between field performance and susceptibility to leaf infection in three of the four studied common ash clones, i.e., good field performance was associated with a low petiole colonization level and vice versa. Low susceptibility to leaf infection may counteract leaf-to-shoot spread of the pathogen in common ash, but the limited number of clones studied warrants caution and a larger study. The Manchurian ash clone had the highest petiole colonization level, which may suggest that this native host has evolved additional mechanisms to avoid shoot infection.

7.
Sci Rep ; 8(1): 17448, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487524

RESUMO

Natural and urban forests worldwide are increasingly threatened by global change resulting from human-mediated factors, including invasions by lethal exotic pathogens. Ash dieback (ADB), incited by the alien invasive fungus Hymenoscyphus fraxineus, has caused large-scale population decline of European ash (Fraxinus excelsior) across Europe, and is threatening to functionally extirpate this tree species. Genetically controlled host resistance is a key element to ensure European ash survival and to restore this keystone species where it has been decimated. We know that a low proportion of the natural population of European ash expresses heritable, quantitative resistance that is stable across environments. To exploit this resource for breeding and restoration efforts, tools that allow for effective and efficient, rapid identification and deployment of superior genotypes are now sorely needed. Here we show that Fourier-transform infrared (FT-IR) spectroscopy of phenolic extracts from uninfected bark tissue, coupled with a model based on soft independent modelling of class analogy (SIMCA), can robustly discriminate between ADB-resistant and susceptible European ash. The model was validated with populations of European ash grown across six European countries. Our work demonstrates that this approach can efficiently advance the effort to save such fundamental forest resource in Europe and elsewhere.


Assuntos
Epidemias , Fenótipo , Doenças das Plantas/microbiologia , Análise Espectral , Suscetibilidade a Doenças , Europa (Continente) , Fraxinus/genética , Fraxinus/microbiologia , Geografia , Análise Espectral/métodos
8.
Sci Data ; 4: 170190, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29257137

RESUMO

European common ash, Fraxinus excelsior, is currently threatened by Ash dieback (ADB) caused by the fungus, Hymenoscyphus fraxineus. To detect and identify metabolites that may be products of pathways important in contributing to resistance against H. fraxineus, we performed untargeted metabolomic profiling on leaves from five high-susceptibility and five low-susceptibility F. excelsior individuals identified during Danish field trials. We describe in this study, two datasets. The first is untargeted LC-MS metabolomics raw data from ash leaves with high-susceptibility and low-susceptibility to ADB in positive and negative mode. These data allow the application of peak picking, alignment, gap-filling and retention-time correlation analyses to be performed in alternative ways. The second, a processed dataset containing abundances of aligned features across all samples enables further mining of the data. Here we illustrate the utility of this dataset which has previously been used to identify putative iridoid glycosides, well known anti-herbivory terpenoid derivatives, and show differential abundance in tolerant and susceptible ash samples.


Assuntos
Fraxinus , Metaboloma , Doenças das Plantas , Folhas de Planta/metabolismo
9.
Front Plant Sci ; 7: 821, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27379120

RESUMO

Polyploidy is a common phenomenon in the evolution of angiosperms. It has been suggested that polyploids manage harsh environments better than their diploid relatives but empirical data supporting this hypothesis are scarce, especially for trees. Using microsatellite markers and flow cytometry, we examine the frequency of polyploids and diploids in a progeny trial testing four different populations of Acacia senegal, a species native to sub-Saharan regions of Africa. We compare growth between cytotypes and test whether polyploid seedlings grow better than diploids. Our results show that polyploids coexist with diploids in highly variable proportions among populations in Senegal. Acacia senegal genotypes were predominantly diploid and tetraploid, but triploid, pentaploid, hexaploid, and octaploid forms were also found. We find that polyploids show faster growth than diploids under our test conditions: in an 18 years old field trial, polyploid superiority was estimated to be 17% in trunk diameter and 9% in height while in a growth chamber experiment, polyploids grew 28% taller, but only after being exposed to drought stress. The results suggest that polyploid A. senegal can have an adaptive advantage in some regions of Africa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...